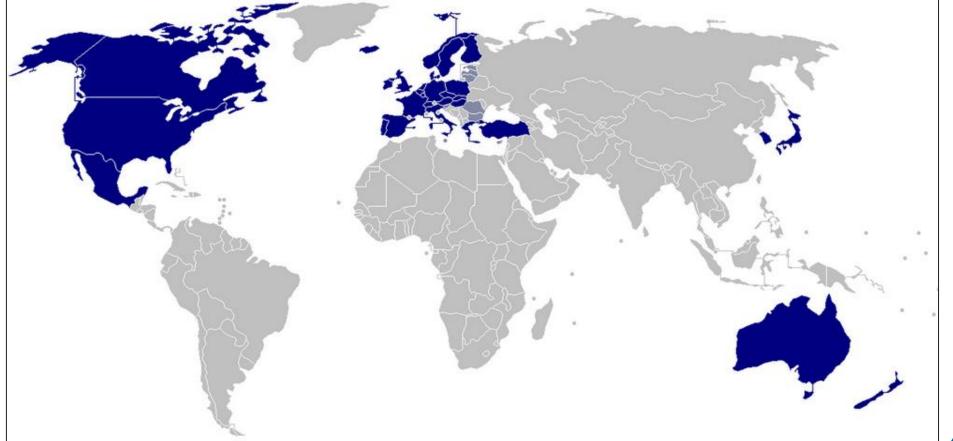
OECD WORK ON NANOTECHNOLOGY SKILLS AND EDUCATION

Nanoscale Science and Engineering Education – the Next Steps 11 December, 2014

Richard Scott, Science and Technology Policy Division



- Role of the OECD and its work on nanotechnology
- Summary of project *Skills and Education for Nanotechnology in an Increasingly Multidisciplinary Environment*
- Connecting to other work on skills and education for innovation
- Questions/discussion

Organisation for Economic Cooperation and Development

- 34 Member countries, plus links with those outside
- "Better Policies for Better Lives"
- Peer learning, best practice, comparable data collection, publications

OECD Member Countries

Countries/Economies Engaged in Working Relationships with the OECD

Committee on Scientific and Technological Policy (CSTP)

Committee on Science and Technological Policy

• Exchange information, best practices and evaluation on science and technology policy to best encourage economic growth

Working parties:

Technology and innovation policy

Statistics and indicators

Biotechnology

Nanotechnology

OECD Working Party on Nanotechnology (WPN)

- Nanotechnology = nanoscale science, engineering and technology
- Will become part of new group on Bio-, Nano- and Converging Technologies (BNCT) in 2015

OECD Working Party on Nanotechnology

- Examples of work areas:
 - Statistics and indicators
 - Business environments
 - Economic impacts
 - Regulatory frameworks
 - Risk governance
 - Public engagement
 - Nanotechnology and water
 - International co-operation, etc

Elsewhere.....OECD Working Party on Manufactured Nanomaterials

- Safety of manufactured nanomaterials
- Harmonised process for risk assessment

Skills and Education for Nanotechnology in an Increasingly Multidisciplinary Environment

- Short survey (completed 2014) to provide snapshot of
 - OECD country approaches to develop skills and education for nanotechnology;
 - how these policies were being implemented and;
 - examples of country activity.
- Focus solely on national initiatives (central governments and their agencies)
- 11 responses received: Chile, Finland, France, Germany, Korea, the Netherlands, Norway, South Africa, Spain, Sweden, Turkey, plus additional desk research

1. Needs assessments

3. Monitoring and Evaluation

4. Availability of nanotechnology education and training

5. Country Profiles

Some countries have undertake a needs assessment of skills for nanotechnology

	Q1b. Has an assessment of skills/education need been made in your country?	
	Yes	No
Chile		X
Finland	X	
France	X	
Germany	X	
Korea	Х	
Netherlands		X
Norway		Х
South Africa		X
Spain		Х
Sweden	Х	
Turkey		Х
TOTAL	5	6

- Examples:
 - Korea's annual manpower status survey of 250 companies (since 2009).
 Provides a quantitative assessment of the number of experts required in this field.
 - Germany developed quantitative measures based on a survey of nanotechnology companies

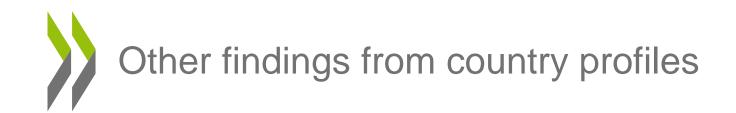
Industry plays a role in most countries

	Q2c. Does industry play a role in skills and education for nanotechnology?		
	Yes	No	
Chile		X	
Finland	Х		
France	Х		
Germany	X		
Korea	X		
Netherlands	X		
Norway	Х		
South Africa		X	
Spain	Х		
Sweden	X		
Turkey	X		
TOTAL	9	2	

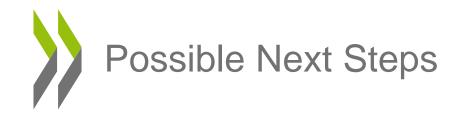
- However, industry is also commonly involved at an earlier stage, e.g. Spain -'industrial PhDs'
- Norway industry representatives sit on Research Council for Norway boards that , e.g. make funding decisions and issue PhDs
- Can be more ad hoc too individual firms and individual universities – government role is more facilitation/incentives (not a given)

Little evidence of monitoring and evaluation of policies on skills & education for nanotechnology

	Q3a. Has monitoring and evaluation of policies been undertaken?	
	Yes	No
Chile		Х
Finland		X
France	X	
Germany		X
Korea		X
Netherlands		X
Norway	X	
South Africa		X
Spain		X
Sweden		X
Turkey		X
TOTAL	2	9


- Monitoring and evaluation was not identified as being a regular activity.
- However, examples have been noted by France in relation to the assessment of institutes covering nanotechnology
- Formal evaluation of a nanotechnology programme in the case of Norway and its NANOMAT (PhD) programme.

Education level and nanoscale specialisation


Educational tier	Nano- relevant	Nano- focused	Nano- specific
Primary	10		
Lower secondary	10		
Upper secondary	10	1	
University e.g. B.Sc.	10	10	4
Advanced University e.g. MSc or PhD	10	10	10
Vocational training			7

Number of countries (out of 10)

- Nano-relevant education and training (e.g. within a broader science curriculum) takes place at the school level;
- Nano-focused education and training first becomes available at undergraduate level, except in the case of Korea;
- There is a mix of approaches to nano-specific education as four countries (Germany, Korea, Norway and Sweden) offer this at undergraduate level and six (Finland, France, the Netherlands, South Africa, Spain and Turkey) begin at postgraduate level.

- Germany collection on nanotechnology education courses at the postgraduate level are available on the Federal Ministry of Education and Research website
- Korea has written skills and education for technology into legislation. Part of the Comprehensive Nanotechnology Development Plan – currently in Phase 3. Six regional technical schools focusing on practical nanotechnology programmes
- Netherlands NanoNextNL is a consortium of firms, universities and institutes. Professional learning opportunities for researchers (e.g. risk analysis)

 Skills and Education included in the draft BNCT work programme for discussion.

– Could broaden further work:

- More actors scope to examine requirements and actions among industry, research institutes, enforcement agencies and regional/state government
- More technology areas
- Step-back the place of skills and education (e.g. STEM) in innovation.

Other OECD activities related to nanoscale science and engineering

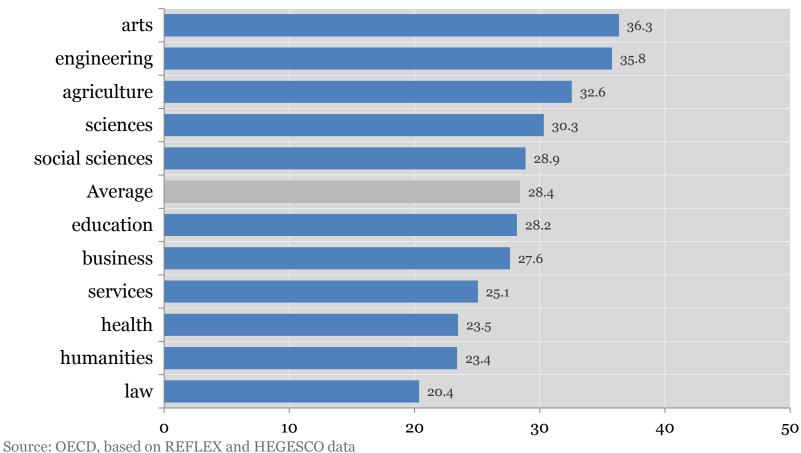

• Work on **skills for innovation**

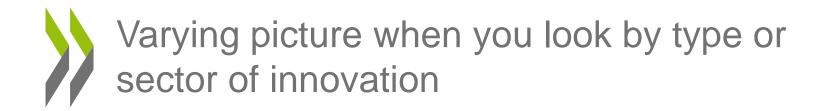
Technical skills (know-what and know-how)

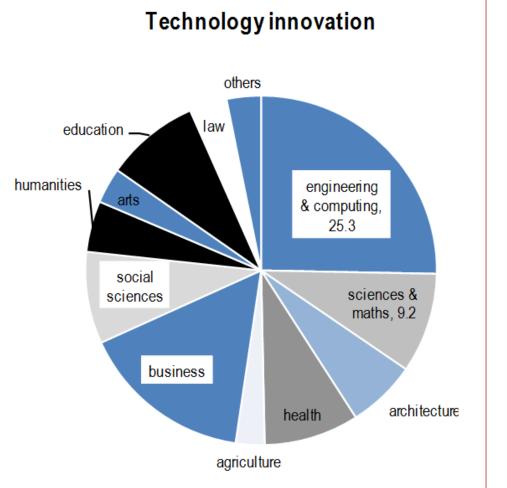
Behavioural and social skills (character) (Self-confidence, energy, perseverance, passion, leadership, collaboration, communication)

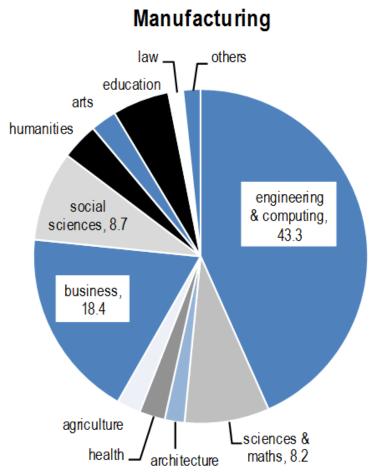
Skills in thinking and creativity

(Critical thinking, observation, curiosity, ability to make connections, imagination,...)

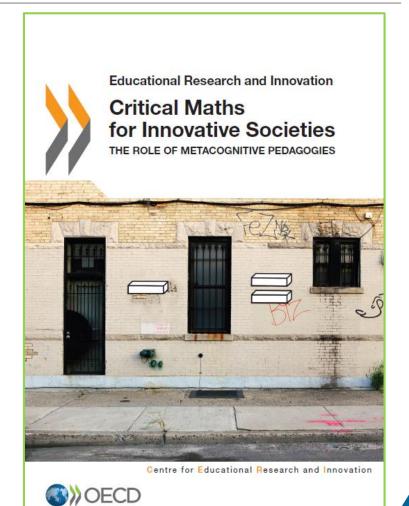



- Skills shortfall arguments need more nuance
 - Which skills are hardest for firms or PhD programmes or firms to instil?
- Possible barriers for different skills:
 - Assessment systems generally poorly aligned with developing non-technical skills in OECD countries, especially at K-12 level → poor incentives
 - Curriculum development (technical skills)


Innovation uses a variety of skills


What percentage of university graduates of a given field have a highly innovative job?

Product / service innovation



Source: OECD analysis of REFLEX/HEGESCO databases

OECD work on teaching STEM for broad skills

- Maths in secondary school evidence of metacognitive strategies shows promising potential to increase interest, curiosity, while improving test scores of the lowest performing pupils
- In higher education, problembased learning also strongly associated with better ability to apply one's knowledge. Most evidence comes from medicine, but some for engineering too

Importance of the technical workforce in innovation

'Technical' workforce. Evidence suggests that non-university educated technical workers contribute to a large proportion of incremental innovation – e.g. in areas of instrumentation

Type of	Radical	Incremental
innovation		
Product	1. R&D personnel (conception)	1. Engineers (implementation)
	2. Engineers (implementation)	2. R&D personnel (conception)
Process	1. Engineers (conception)	1. Technicians (implementation)
	2. Technicians (implementation)	2. Engineers (conception)

Source: Huiban and Bouhsina (1998), "Innovation and the quality of labour factor: An empirical investigation in the French food industry", *Small Business Economics*, Vol. 10, pp. 389-400.

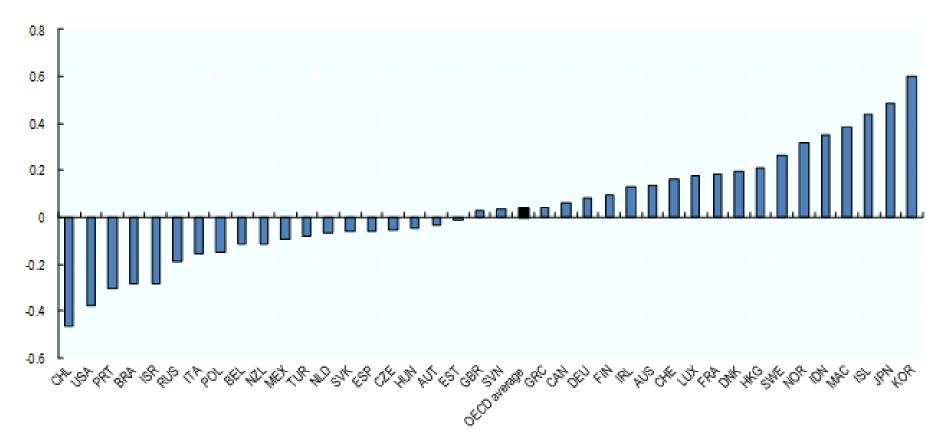
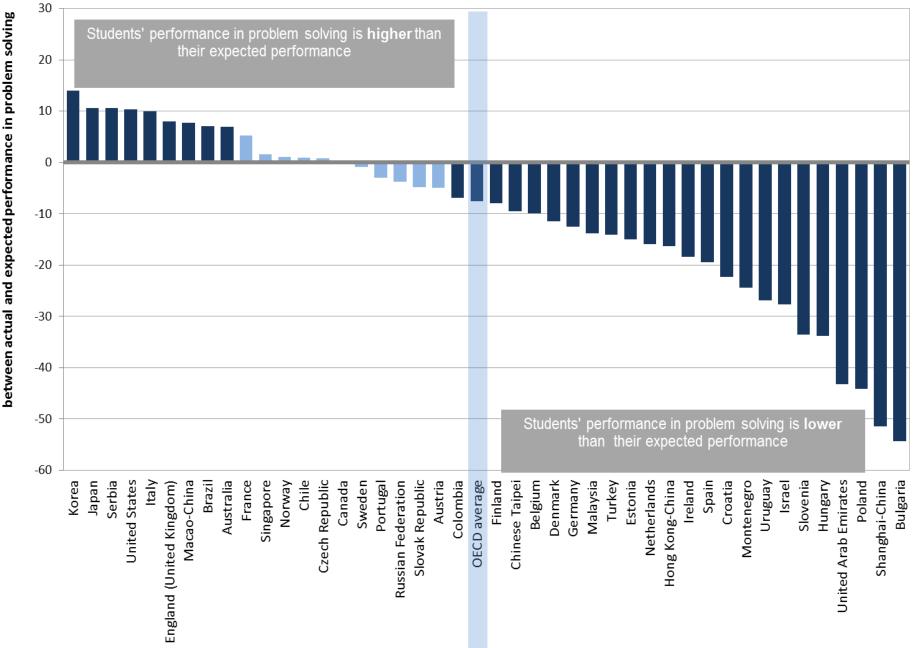




Figure 2.14.2 Correlation of average test scores and average interest in science at the school level, OECD, Key Partner and non-member countries, 2006

Source: PISA 2006

Score-point difference ween actual and expected performance in problem solv Thank you! richard.scott@oecd.org

http://www.oecd.org/sti/nano/ http://www.oecd.org/sti/sci-tech/

